Monatshefte für Chemie 102, 1374—1376 (1971) © by Springer-Verlag 1971

Konstitution von PrMn₂-PrAl₂*

Von

H. Oesterreicher

Aus dem Oregon Graduate Center, 19600 N.W. Walker Rd. Beaverton, Oregon 97005, USA

(Eingegangen am 2. März 1971)

Constitution of PrMn₂-PrAl₂

 $\Pr Mn_2$ (Th₆Mn₂₃ type) dissolves about 0.5 mole% PrAl₂. A C14 structure is stable from 2.25 to 22.5 mole% PrAl₂ and PrAl₂ (C15) dissolves 66.3 mole% PrMn₂.

 $\Pr Mn_2$ (Th₆Mn₂₃-Struktur) löst etwa 0,5 Mol% PrAl₂. Eine C14-Struktur ist stabil von 2,25 bis 22,5 Mol% PrAl₂ und PrAl₂ (C15) löst 66,3 Mol% PrMn₂.

Das andauernde Interesse an der Frage der Phasenstabilität und der Architektur der Anordnung der magnetischen Momente in Systemen, bei denen die freie Elektronenkonzentration pro Atom (e. c.) systematisch variiert werden kann, veranlaßte uns zu der vorliegenden Untersuchung. Uns lag besonders daran, weite homogene Bereiche in der Kristallstruktur herzustellen. Die allgemeine Idee, die hinter dieser Arbeit steht, haben wir schon an anderer Stelle dargelegt¹.

Wernick und Mitarb.² stellten fest, daß $PrAl_2$ als Laves-Phase vom C15-Typ kristallisiert, und Teslyuk und Mitarb.³ beschrieben $PrMn_2$ als C14-Typ. Neuere Untersuchungen von $PrMn_2$ durch Oesterreicher⁴ konnten letztere Aussage jedoch nicht bestätigen. Es zeigte sich, daß erschmolzene und geglühte Proben von $PrMn_2$ bei 1000 K vom Th_6Mn_{23} -Typ sind.

Die Proben wurden aus 99,9proz. Pr der Michigan Chemical Corporation of Chicago, 99,99proz. Mn und 99,999proz. Al durch Schmelzen im Hochfrequenzofen hergestellt. Die Metallstücke wurden in Tiegeln aus hochreinem MgO in Argonatmosphäre zusammengeschmolzen.

^{*} Herrn Prof. Dr. H. Nowotny gewidmet.

¹ H. Oesterreicher, J. Phys. Chem. Solids (im Druck).

² J. H. Wernick und S. Geller, Trans. AIME, 218 866 (1960).

³ M. J. Teslyuk, P. I. Kripyakovic und D. P. Frankevic, Kristallografiya [SSSR] 9, 558 (1964).

⁴ H. Oesterreicher, J. Less Comm. Metals 23 (1), 7 (1970).

1375

Einige der Proben wurden in evakuierte Quarzröhrchen eingeschmolzen und bei 1000 K geglüht. Für die *Debye*—*Scherrer*-Aufnahmen wurde Cr-Strahlung und V-Filter verwendet. Nähere Details über die experimentelle Vorgangsweise kann man an anderer Stelle nachlesen⁴.

In Tab. 1 sind die Gitterparameter und Kristallstrukturen von PrMn₂—PrAl₂ angegeben. Wir haben schon früher kurz beschrieben⁴, daß verschiedene Herstellungsarten (stets bei 1000 K) zur TheMn23-Struktur von PrMn₂ führten, bei der ein Teil der Pr-Atome auf den Mn-Gitterplätzen gemäß der Formel Pr₆(Pr_{0.159}Mn_{0.841})₂₃ angeordnet ist. Es wurde versucht, die Tatsache, daß die Th₆Mn₂₃-Struktur nicht in der theoretischen Zusammensetzung entsteht, aus einem ungünstigen Größenfaktor zu erklären. Eine sehr kleine Zunahme im Gitterparameter bei der Substitution von Mn durch Al läßt auf eine Löslichkeit in der Größenordnung von 0.5 Mol_{0} PrAl₂ in PrMn₂ schließen. Weitere Substitution von Mn durch Al führt jedoch zu einer Stabilisierung der hexagonalen Laves-Phasenstruktur vom C14-Typ. Der homogene Bereich erstreckt sich von Pr_{0.333}Mn_{0.652}Al_{0.015} bis Pr_{0.333}Mn_{0.517}Al_{0.15}. Außerhalb dieser Konzentrationen tritt keine Änderung im Volumen des C14-PrMn_xAl_{2-x} auf, und in den *Debye*—Scherrer-Aufnahmen beobachtet man die Überlagerung einer neuen Phase. Die C15-Struktur ist stabil von Pr_{0.333}Mn_{0.417}Al_{0.225} bis PrAl₂. C15 und C14 bilden sich leicht beim Schmelzen, und man beobachtet keine Änderung der kristallographischen Parameter, wenn die Materialien erschmolzen und an-

$\frac{\rm Zusammensetzung}{\rm Pr_{0,333}Mn_{0,667-x}Al_x}$		Herstellungs- art*	Struktur	a ₀ (Å)	c ₀ (Å)	c_{0}/a_{0}
x =	0	m + a	kfz	12,690		
	0,01	m + a	${ m kfz \atop C14}$	$12,695 \\ 5.588$	9,108	1,630
	0,025	\mathbf{m}	`C14	5,593	9,113	1,630
	0,05	\mathbf{m}	C14	5,601	9,130	1,630
	0,10	m	C14	5,618	9,157	1,630
	0,14	m (m + a)	C14 C15	5,625 $7,983$	9,169	1,629
	0,167	m	C14 C15	$5,625 \\ 7,983$	9,169	1,629
	0,333	m	(7,994		
		(m)				
	3,40	(m + a)	C15	8,012		
	0.467	m	C15	8,022		
	0,567	m	C15	8,031		
	0,667	\mathbf{m}	C15	8,051		

Tabelle 1. Strukturen und Gitterparameter von PrMn2-PrAl2

* m = geschmolzen; m + a = geschmolzen und bei 1000 K geglüht.

schließend geglüht wurden. Bei $PrMn_2$ ist das nicht der Fall. Proben, die ohne nachfolgende Wärmebehandlung erschmolzen wurden, zeigen das Vorliegen von β -Mn und den Th₆Mn₂₃-Typ.

Interessant ist der Vergleich der homogenen Bereiche von PrMn2-PrAl₂ mit denen von GdFe₂-GdAl₂ und von GdCo₂-GdAl₂⁵. Obwohl die Strukturen der Grenzphasen GdCo₂ und GdFe₂ (beide C15) und des PrMn₂ (Th₆Mn₂₃-Typ) verschieden sind, bildet sich in den beiden erstgenannten Fällen ebenfalls ein C14-Zwischentyp von Gd_{0.333}Fe_{0.487}Al_{0.180} bis Gd_{0.333}Fe_{0.321}Al_{0.346} bzw.Gd_{0.333}Co_{0.341}Al_{0.326} bis Gd_{0.333}Co_{0.181}Al_{0.486} aus. Die C15-Struktur ist stabil von Gd_{0.333}Fe_{0.222}Al_{0.445} bis GdAl₂ und von Gd_{0.333}Co_{0.175}Al_{0.492} bis GdCo₂. Das ist den Verhältnissen bei PrMn₂-PrAl₂ vergleichbar; verglichen mit den Co, Fe und Mn enthaltenden Systemen, stellt man jedoch eine deutliche Tendenz der Phasengrenzen zu niedrigeren Al-Konzentrationen fest. Das stimmt gut mit der Beobachtung von Elliott und Mitarb.⁶ und von Dwight⁷ überein, daß Lavesphasen in Stabilitätsbändern auftreten, welche verschiedene Elektronenkonzentrationen haben (dabei nahmen die Autoren an, daß Fermiflächen-Brillouinzonen-Wechselwirkungen für die Phasenstabilität verantwortlich sind). Elliott und Mitarb. verglichen das Auftreten einer beträchtlichen Anzahl von Lavesphasen der Übergangsmetalle und kamen (unter gewissen Annahmen) zu dem Schluß, daß die Wertigkeiten von Mn, Fe und Co 1,32, 0,92 bzw. 0,72 sind.

Beim Vergleich von $PrMn_2$ — $PrAl_2$ mit $GdMn_2$ — $GdAl_2$ und $ErMn_2$ — $ErAl_2$ scheinen die Verhältnisse komplexer zu sein. Während $GdMn_2$ — $GdAl_2$ über den gesamten Bereich vom C15-Typ ist, hat $ErMn_2$ (C14) einen sehr begrenzten homogenen Bereich (in der Größenordnung von einigen Mol_{0}° $ErAl_2$) und einen breiten Homogenitätsbereich von C15- $ErAl_2(Mn)^8$. Das scheint darauf hinzuweisen, daß Pr eine geringere *e.c.* als Gd oder Er hat; hingegen kamen wir zu gegenteiligen Aussagen aus dem Vergleich der Phasengrenzen von $PrCo_2$ — $PrAl_2^{\circ}$ mit jenen von $GdCo_2$ — $GdAl_2$ und $ErCo_2$ — $ErAl_2$. Die Faktoren, die die Stabilität des C14- $PrMn_xAl_{2-x}$ bestimmen, sind daher zur Zeit nicht vollkommen verständlich, und es ist möglich, daß sie mit variierenden Valenzzuständen des Pr und des Mn in Zusammenhang stehen, wie es in früheren Untersuchungen^{9, 10} vorgeschlagen wurde.

⁵ H. Oesterreicher und W. E. Wallace, J. Less Comm. Metals 13, 475 (1967).

⁶ R. P. Elliott und W. Rostocker, Trans. ASM 50, 617 (1958).

⁷ A. E. Dwight, Trans. ASM 53, 479 (1961).

⁸ H. Oesterreicher, J. Phys. Chem. Solids (Veröffentl. vorgesehen).

⁹ H. Oesterreicher und W. E. Wallace, J. Less Comm. Metals 13, 91 (1967).

¹⁰ S. A. Marei, R. S. Craig, W. E. Wallace und T. Tsuchida, J. Less Comm. Metals **13**, 391 (1967).